1 The world is all that is the case.
1.1 The world is the totality of facts, not of things.
1.11 The world is determined by the facts, and by their being all the
facts.
1.12 For the totality of facts determines what is the case, and also
whatever is not the case.
1.13 The facts in logical space are the world.
1.2 The world divides into facts.
1.21 Each item can be the case or not the case while everything else
remains the same.
2 What is the case--a fact--is the existence of states of affairs.
2.01 A state of affairs (a state of things) is a combination of objects
(things).
2.011 It is essential to things that they should be possible constituents
of states of affairs.
2.012 In logic nothing is accidental: if a thing can occur in a state of
affairs, the possibility of the state of affairs must be written into the thing itself.
2.0121 It would seem to be a sort of accident, if it turned out that a
situation would fit a thing that could already exist entirely on its own. If things can
occur in states of affairs, this possibility must be in them from the beginning. (Nothing
in the province of logic can be merely possible. Logic deals with every possibility and
all possibilities are its facts.) Just as we are quite unable to imagine spatial objects
outside space or temporal objects outside time, so too there is no object that we can
imagine excluded from the possibility of combining with others. If I can imagine objects
combined in states of affairs, I cannot imagine them excluded from the possibility of such
combinations.
2.0122 Things are independent in so far as they can occur in all possible
situations, but this form of independence is a form of connexion with states of affairs, a
form of dependence. (It is impossible for words to appear in two different roles: by
themselves, and in propositions.)
2.0123 If I know an object I also know all its possible occurrences in
states of affairs. (Every one of these possibilities must be part of the nature of the
object.) A new possibility cannot be discovered later.
2.01231 If I am to know an object, thought I need not know its external
properties, I must know all its internal properties.
2.0124 If all objects are given, then at the same time all possible
states of affairs are also given.
2.013 Each thing is, as it were, in a space of possible states of
affairs. This space I can imagine empty, but I cannot imagine the thing without the space.
2.0131 A spatial object must be situated in infinite space. (A spatial
point is an argument-place.) A speck in the visual field, thought it need not be red, must
have some colour: it is, so to speak, surrounded by colour-space. Notes must have some
pitch, objects of the sense of touch some degree of hardness, and so on.
2.014 Objects contain the possibility of all situations.
2.0141 The possibility of its occurring in states of affairs is the form
of an object.
2.02 Objects are simple.
2.0201 Every statement about complexes can be resolved into a statement
about their constituents and into the propositions that describe the complexes completely.
2.021 Objects make up the substance of the world. That is why they cannot
be composite.
2.0211 If they world had no substance, then whether a proposition had
sense would depend on whether another proposition was true.
2.0212 In that case we could not sketch any picture of the world (true or
false).
2.022 It is obvious that an imagined world, however difference it may be
from the real one, must have something-- a form--in common with it.
2.023 Objects are just what constitute this unalterable form.
2.0231 The substance of the world can only determine a form, and not any
material properties. For it is only by means of propositions that material properties are
represented--only by the configuration of objects that they are produced.
2.0232 In a manner of speaking, objects are colourless.
2.0233 If two objects have the same logical form, the only distinction
between them, apart from their external properties, is that they are different.
2.02331 Either a thing has properties that nothing else has, in which
case we can immediately use a description to distinguish it from the others and refer to
it; or, on the other hand, there are several things that have the whole set of their
properties in common, in which case it is quite impossible to indicate one of them. For it
there is nothing to distinguish a thing, I cannot distinguish it, since otherwise it would
be distinguished after all.
2.024 The substance is what subsists independently of what is the case.
2.025 It is form and content.
2.0251 Space, time, colour (being coloured) are forms of objects.
2.026 There must be objects, if the world is to have unalterable form.
2.027 Objects, the unalterable, and the subsistent are one and the same.
2.0271 Objects are what is unalterable and subsistent; their
configuration is what is changing and unstable.
2.0272 The configuration of objects produces states of affairs.
2.03 In a state of affairs objects fit into one another like the links of
a chain.
2.031 In a state of affairs objects stand in a determinate relation to
one another.
2.032 The determinate way in which objects are connected in a state of
affairs is the structure of the state of affairs.
2.033 Form is the possibility of structure.
2.034 The structure of a fact consists of the structures of states of
affairs.
2.04 The totality of existing states of affairs is the world.
2.05 The totality of existing states of affairs also determines which
states of affairs do not exist.
2.06 The existence and non-existence of states of affairs is reality. (We
call the existence of states of affairs a positive fact, and their non-existence a
negative fact.)
2.061 States of affairs are independent of one another.
2.062 From the existence or non-existence of one state of affairs it is
impossible to infer the existence or non-existence of another.
2.063 The sum-total of reality is the world.
2.1 We picture facts to ourselves.
2.11 A picture presents a situation in logical space, the existence and
non-existence of states of affairs.
2.12 A picture is a model of reality.
2.13 In a picture objects have the elements of the picture corresponding
to them.
2.131 In a picture the elements of the picture are the representatives of
objects.
2.14 What constitutes a picture is that its elements are related to one
another in a determinate way.
2.141 A picture is a fact.
2.15 The fact that the elements of a picture are related to one another
in a determinate way represents that things are related to one another in the same way.
Let us call this connexion of its elements the structure of the picture, and let us call
the possibility of this structure the pictorial form of the picture.
2.151 Pictorial form is the possibility that things are related to one
another in the same way as the elements of the picture.
2.1511 That is how a picture is attached to reality; it reaches right out
to it.
2.1512 It is laid against reality like a measure.
2.15121 Only the end-points of the graduating lines actually touch the
object that is to be measured.
2.1514 So a picture, conceived in this way, also includes the pictorial
relationship, which makes it into a picture.
2.1515 These correlations are, as it were, the feelers of the picture's
elements, with which the picture touches reality.
2.16 If a fact is to be a picture, it must have something in common with
what it depicts.
2.161 There must be something identical in a picture and what it depicts,
to enable the one to be a picture of the other at all.
2.17 What a picture must have in common with reality, in order to be able
to depict it--correctly or incorrectly--in the way that it does, is its pictorial form.
2.171 A picture can depict any reality whose form it has. A spatial
picture can depict anything spatial, a coloured one anything coloured, etc.
2.172 A picture cannot, however, depict its pictorial form: it displays
it.
2.173 A picture represents its subject from a position outside it. (Its
standpoint is its representational form.) That is why a picture represents its subject
correctly or incorrectly.
2.174 A picture cannot, however, place itself outside its
representational form.
2.18 What any picture, of whatever form, must have in common with
reality, in order to be able to depict it--correctly or incorrectly--in any way at all, is
logical form, i.e. the form of reality.
2.181 A picture whose pictorial form is logical form is called a logical
picture.
2.182 Every picture is at the same time a logical one. (On the other
hand, not every picture is, for example, a spatial one.)
2.19 Logical pictures can depict the world.
2.2 A picture has logico-pictorial form in common with what it depicts.
2.201 A picture depicts reality by representing a possibility of
existence and non-existence of states of affairs.
2.202 A picture contains the possibility of the situation that it
represents.
2.203 A picture agrees with reality or fails to agree; it is correct or
incorrect, true or false.
2.22 What a picture represents it represents independently of its truth
or falsity, by means of its pictorial form.
2.221 What a picture represents is its sense.
2.222 The agreement or disagreement or its sense with reality constitutes
its truth or falsity.
2.223 In order to tell whether a picture is true or false we must compare
it with reality.
2.224 It is impossible to tell from the picture alone whether it is true
or false.
2.225 There are no pictures that are true a priori.
3 A logical picture of facts is a thought.
3.001 'A state of affairs is thinkable': what this means is that we can
picture it to ourselves.
3.01 The totality of true thoughts is a picture of the world.
3.02 A thought contains the possibility of the situation of which it is
the thought. What is thinkable is possible too.
3.03 Thought can never be of anything illogical, since, if it were, we
should have to think illogically.
3.031 It used to be said that God could create anything except what would
be contrary to the laws of logic.The truth is that we could not say what an 'illogical'
world would look like.
3.032 It is as impossible to represent in language anything that
'contradicts logic' as it is in geometry to represent by its coordinates a figure that
contradicts the laws of space, or to give the coordinates of a point that does not exist.
3.0321 Though a state of affairs that would contravene the laws of
physics can be represented by us spatially, one that would contravene the laws of geometry
cannot.
3.04 It a thought were correct a priori, it would be a thought whose
possibility ensured its truth.
3.05 A priori knowledge that a thought was true would be possible only it
its truth were recognizable from the thought itself (without anything a to compare it
with).
3.1 In a proposition a thought finds an expression that can be perceived
by the senses.
3.11 We use the perceptible sign of a proposition (spoken or written,
etc.) as a projection of a possible situation. The method of projection is to think of the
sense of the proposition.
3.12 I call the sign with which we express a thought a propositional
sign.And a proposition is a propositional sign in its projective relation to the world.
3.13 A proposition, therefore, does not actually contain its sense, but
does contain the possibility of expressing it. ('The content of a proposition' means the
content of a proposition that has sense.) A proposition contains the form, but not the
content, of its sense.
3.14 What constitutes a propositional sign is that in its elements (the
words) stand in a determinate relation to one another. A propositional sign is a fact.
3.141 A proposition is not a blend of words.(Just as a theme in music is
not a blend of notes.) A proposition is articulate.
3.142 Only facts can express a sense, a set of names cannot.
3.143 Although a propositional sign is a fact, this is obscured by the
usual form of expression in writing or print. For in a printed proposition, for example,
no essential difference is apparent between a propositional sign and a word. (That is what
made it possible for Frege to call a proposition a composite name.)
3.1431 The essence of a propositional sign is very clearly seen if we
imagine one composed of spatial objects (such as tables, chairs, and books) instead of
written signs.
3.1432 Instead of, 'The complex sign "aRb" says that a stands
to b in the relation R' we ought to put, 'That "a" stands to "b" in a
certain relation says that aRb.'
3.144 Situations can be described but not given names.
3.2 In a proposition a thought can be expressed in such a way that
elements of the propositional sign correspond to the objects of the thought.
3.201 I call such elements 'simple signs', and such a proposition
'complete analysed'.
3.202 The simple signs employed in propositions are called names.
3.203 A name means an object. The object is its meaning. ('A' is the same
sign as 'A'.)
3.21 The configuration of objects in a situation corresponds to the
configuration of simple signs in the propositional sign.
3.221 Objects can only be named. Signs are their representatives. I can
only speak about them: I cannot put them into words. Propositions can only say how things
are, not what they are.
3.23 The requirement that simple signs be possible is the requirement
that sense be determinate.
3.24 A proposition about a complex stands in an internal relation to a
proposition about a constituent of the complex. A complex can be given only by its
description, which will be right or wrong. A proposition that mentions a complex will not
be nonsensical, if the complex does not exits, but simply false. When a propositional
element signifies a complex, this can be seen from an indeterminateness in the
propositions in which it occurs. In such cases we know that the proposition leaves
something undetermined. (In fact the notation for generality contains a prototype.) The
contraction of a symbol for a complex into a simple symbol can be expressed in a
definition.
3.25 A proposition cannot be dissected any further by means of a
definition: it is a primitive sign.
3.261 Every sign that has a definition signifies via the signs that serve
to define it; and the definitions point the way. Two signs cannot signify in the same
manner if one is primitive and the other is defined by means of primitive signs. Names
cannot be anatomized by means of definitions. (Nor can any sign that has a meaning
independently and on its own.)
3.262 What signs fail to express, their application shows. What signs
slur over, their application says clearly.
3.263 The meanings of primitive signs can be explained by means of
elucidations. Elucidations are propositions that stood if the meanings of those signs are
already known.
3.3 Only propositions have sense; only in the nexus of a proposition does
a name have meaning.
3.31 I call any part of a proposition that characterizes its sense an
expression (or a symbol). (A proposition is itself an expression.) Everything essential to
their sense that propositions can have in common with one another is an expression. An
expression is the mark of a form and a content.
3.311 An expression presupposes the forms of all the propositions in
which it can occur. It is the common characteristic mark of a class of propositions.
3.312 It is therefore presented by means of the general form of the
propositions that it characterizes. In fact, in this form the expression will be constant
and everything else variable.
3.313 Thus an expression is presented by means of a variable whose values
are the propositions that contain the expression. (In the limiting case the variable
becomes a constant, the expression becomes a proposition.) I call such a variable a
'propositional variable'.
3.314 An expression has meaning only in a proposition. All variables can
be construed as propositional variables. (Even variable names.)
3.315 If we turn a constituent of a proposition into a variable, there is
a class of propositions all of which are values of the resulting variable proposition. In
general, this class too will be dependent on the meaning that our arbitrary conventions
have given to parts of the original proposition. But if all the signs in it that have
arbitrarily determined meanings are turned into variables, we shall still get a class of
this kind. This one, however, is not dependent on any convention, but solely on the nature
of the pro position. It corresponds to a logical form--a logical prototype.
3.316 What values a propositional variable may take is something that is
stipulated. The stipulation of values is the variable.
3.317 To stipulate values for a propositional variable is to give the
propositions whose common characteristic the variable is. The stipulation is a description
of those propositions. The stipulation will therefore be concerned only with symbols, not
with their meaning. And the only thing essential to the stipulation is that it is merely a
description of symbols and states nothing about what is signified. How the description of
the propositions is produced is not essential.
3.318 Like Frege and Russell I construe a proposition as a function of
the expressions contained in it.
3.32 A sign is what can be perceived of a symbol.
3.321 So one and the same sign (written or spoken, etc.) can be common to
two different symbols--in which case they will signify in different ways.
3.322 Our use of the same sign to signify two different objects can never
indicate a common characteristic of the two, if we use it with two different modes of
signification. For the sign, of course, is arbitrary. So we could choose two different
signs instead, and then what would be left in common on the signifying side?
3.323 In everyday language it very frequently happens that the same word
has different modes of signification--and so belongs to different symbols--or that two
words that have different modes of signification are employed in propositions in what is
superficially the same way. Thus the word 'is' figures as the copula, as a sign for
identity, and as an expression for existence; 'exist' figures as an intransitive verb like
'go', and 'identical' as an adjective; we speak of something, but also of something's
happening. (In the proposition, 'Green is green'--where the first word is the proper name
of a person and the last an adjective--these words do not merely have different meanings:
they are different symbols.)
3.324 In this way the most fundamental confusions are easily produced
(the whole of philosophy is full of them).
3.325 In order to avoid such errors we must make use of a sign-language
that excludes them by not using the same sign for different symbols and by not using in a
superficially similar way signs that have different modes of signification: that is to
say, a sign-language that is governed by logical grammar--by logical syntax. (The
conceptual notation of Frege and Russell is such a language, though, it is true, it fails
to exclude all mistakes.)
3.326 In order to recognize a symbol by its sign we must observe how it
is used with a sense.
3.327 A sign does not determine a logical form unless it is taken
together with its logico-syntactical employment.
3.328 If a sign is useless, it is meaningless. That is the point of
Occam's maxim. (If everything behaves as if a sign had meaning, then it does have
meaning.)
3.33 In logical syntax the meaning of a sign should never play a role. It
must be possible to establish logical syntax without mentioning the meaning of a sign:
only the description of expressions may be presupposed.
3.331 From this observation we turn to Russell's 'theory of types'. It
can be seen that Russell must be wrong, because he had to mention the meaning of signs
when establishing the rules for them.
3.332 No proposition can make a statement about itself, because a
propositional sign cannot be contained in itself (that is the whole of the 'theory of
types').
3.333 The reason why a function cannot be its own argument is that the
sign for a function already contains the prototype of its argument, and it cannot contain
itself. For let us suppose that the function F(fx) could be its own argument: in that case
there would be a proposition 'F(F(fx))', in which the outer function F and the inner
function F must have different meanings, since the inner one has the form O(f(x)) and the
outer one has the form Y(O(fx)). Only the letter 'F' is common to the two functions, but
the letter by itself signifies nothing. This immediately becomes clear if instead of
'F(Fu)' we write '(do) : F(Ou) . Ou = Fu'. That disposes of Russell's paradox.
3.334 The rules of logical syntax must go without saying, once we know
how each individual sign signifies.
3.34 A proposition possesses essential and accidental features.
Accidental features are those that result from the particular way in which the
propositional sign is produced. Essential features are those without which the proposition
could not express its sense.
3.341 So what is essential in a proposition is what all propositions that
can express the same sense have in common. And similarly, in general, what is essential in
a symbol is what all symbols that can serve the same purpose have in common.
3.3411 So one could say that the real name of an object was what all
symbols that signified it had in common. Thus, one by one, all kinds of composition would
prove to be unessential to a name.
3.342 Although there is something arbitrary in our notations, this much
is not arbitrary--that when we have determined one thing arbitrarily, something else is
necessarily the case. (This derives from the essence of notation.)
3.3421 A particular mode of signifying may be unimportant but it is
always important that it is a possible mode of signifying. And that is generally so in
philosophy: again and again the individual case turns out to be unimportant, but the
possibility of each individual case discloses something about the essence of the world.
3.343 Definitions are rules for translating from one language into
another. Any correct sign-language must be translatable into any other in accordance with
such rules: it is this that they all have in common.
3.344 What signifies in a symbol is what is common to all the symbols
that the rules of logical syntax allow us to substitute for it.
3.3441 For instance, we can express what is common to all notations for
truth-functions in the following way: they have in common that, for example, the notation
that uses 'Pp' ('not p') and 'p C g' ('p or g') can be substituted for any of them. (This
serves to characterize the way in which something general can be disclosed by the
possibility of a specific notation.)
3.3442 Nor does analysis resolve the sign for a complex in an arbitrary
way, so that it would have a different resolution every time that it was incorporated in a
different proposition.
3.4 A proposition determines a place in logical space. The existence of
this logical place is guaranteed by the mere existence of the constituents--by the
existence of the proposition with a sense.
3.41 The propositional sign with logical co-ordinates--that is the
logical place.
3.411 In geometry and logic alike a place is a possibility: something can
exist in it.
3.42 A proposition can determine only one place in logical space:
nevertheless the whole of logical space must already be given by it. (Otherwise negation,
logical sum, logical product, etc., would introduce more and more new elements in
co-ordination.) (The logical scaffolding surrounding a picture determines logical space.
The force of a proposition reaches through the whole of logical space.)
3.5 A propositional sign, applied and thought out, is a thought.
4 A thought is a proposition with a sense.
4.001 The totality of propositions is language.
4.022 Man possesses the ability to construct languages capable of
expressing every sense, without having any idea how each word has meaning or what its
meaning is--just as people speak without knowing how the individual sounds are produced.
Everyday language is a part of the human organism and is no less complicated than it. It
is not humanly possible to gather immediately from it what the logic of language is.
Language disguises thought. So much so, that from the outward form of the clothing it is
impossible to infer the form of the thought beneath it, because the outward form of the
clothing is not designed to reveal the form of the body, but for entirely different
purposes. The tacit conventions on which the understanding of everyday language depends
are enormously complicated.
4.003 Most of the propositions and questions to be found in philosophical
works are not false but nonsensical. Consequently we cannot give any answer to questions
of this kind, but can only point out that they are nonsensical. Most of the propositions
and questions of philosophers arise from our failure to understand the logic of our
language. (They belong to the same class as the question whether the good is more or less
identical than the beautiful.) And it is not surprising that the deepest problems are in
fact not problems at all.
4.0031 All philosophy is a 'critique of language' (though not in
Mauthner's sense). It was Russell who performed the service of showing that the apparent
logical form of a proposition need not be its real one.
4.01 A proposition is a picture of reality. A proposition is a model of
reality as we imagine it.
4.011 At first sight a proposition--one set out on the printed page, for
example--does not seem to be a picture of the reality with which it is concerned. But
neither do written notes seem at first sight to be a picture of a piece of music, nor our
phonetic notation (the alphabet) to be a picture of our speech. And yet these
sign-languages prove to be pictures, even in the ordinary sense, of what they represent.
4.012 It is obvious that a proposition of the form 'aRb' strikes us as a
picture. In this case the sign is obviously a likeness of what is signified.
4.013 And if we penetrate to the essence of this pictorial character, we
see that it is not impaired by apparent irregularities (such as the use [sharp] of and
[flat] in musical notation). For even these irregularities depict what they are intended
to express; only they do it in a different way.
4.014 A gramophone record, the musical idea, the written notes, and the
sound-waves, all stand to one another in the same internal relation of depicting that
holds between language and the world. They are all constructed according to a common
logical pattern. (Like the two youths in the fairy-tale, their two horses, and their
lilies. They are all in a certain sense one.)
4.0141 There is a general rule by means of which the musician can obtain
the symphony from the score, and which makes it possible to derive the symphony from the
groove on the gramophone record, and, using the first rule, to derive the score again.
That is what constitutes the inner similarity between these things which seem to be
constructed in such entirely different ways. And that rule is the law of projection which
projects the symphony into the language of musical notation. It is the rule for
translating this language into the language of gramophone records.
4.015 The possibility of all imagery, of all our pictorial modes of
expression, is contained in the logic of depiction.
4.016 In order to understand the essential nature of a proposition, we
should consider hieroglyphic script, which depicts the facts that it describes. And
alphabetic script developed out of it without losing what was essential to depiction.
4.02 We can see this from the fact that we understand the sense of a
propositional sign without its having been explained to us.
4.021 A proposition is a picture of reality: for if I understand a
proposition, I know the situation that it represents. And I understand the proposition
without having had its sense explained to me.
4.022 A proposition shows its sense. A proposition shows how things stand
if it is true. And it says that they do so stand.
4.023 A proposition must restrict reality to two alternatives: yes or no.
In order to do that, it must describe reality completely. A proposition is a description
of a state of affairs. Just as a description of an object describes it by giving its
external properties, so a proposition describes reality by its internal properties. A
proposition constructs a world with the help of a logical scaffolding, so that one can
actually see from the proposition how everything stands logically if it is true. One can
draw inferences from a false proposition.
4.024 To understand a proposition means to know what is the case if it is
true. (One can understand it, therefore, without knowing whether it is true.) It is
understood by anyone who understands its constituents.
4.025 When translating one language into another, we do not proceed by
translating each proposition of the one into a proposition of the other, but merely by
translating the constituents of propositions. (And the dictionary translates not only
substantives, but also verbs, adjectives, and conjunctions, etc.; and it treats them all
in the same way.)
4.026 The meanings of simple signs (words) must be explained to us if we
are to understand them. With propositions, however, we make ourselves understood.
4.027 It belongs to the essence of a proposition that it should be able
to communicate a new sense to us.
4.03 A proposition must use old expressions to communicate a new sense. A
proposition communicates a situation to us, and so it must be essentially connected with
the situation. And the connexion is precisely that it is its logical picture. A
proposition states something only in so far as it is a picture.
4.031 In a proposition a situation is, as it were, constructed by way of
experiment. Instead of, 'This proposition has such and such a sense, we can simply say,
'This proposition represents such and such a situation'.
4.0311 One name stands for one thing, another for another thing, and they
are combined with one another. In this way the whole group--like a tableau
vivant--presents a state of affairs.
4.0312 The possibility of propositions is based on the principle that
objects have signs as their representatives. My fundamental idea is that the 'logical
constants' are not representatives; that there can be no representatives of the logic of
facts.
4.032 It is only in so far as a proposition is logically articulated that
it is a picture of a situation. (Even the proposition, 'Ambulo', is composite: for its
stem with a different ending yields a different sense, and so does its ending with a
different stem.)
4.04 In a proposition there must be exactly as many distinguishable parts
as in the situation that it represents. The two must possess the same logical
(mathematical) multiplicity. (Compare Hertz's Mechanics on dynamical models.)
4.041 This mathematical multiplicity, of course, cannot itself be the
subject of depiction. One cannot get away from it when depicting.
4.0411 If, for example, we wanted to express what we now write as '(x) .
fx' by putting an affix in front of 'fx'--for instance by writing 'Gen. fx'--it would not
be adequate: we should not know what was being generalized. If we wanted to signalize it
with an affix 'g'--for instance by writing 'f(xg)'--that would not be adequate either: we
should not know the scope of the generality-sign. If we were to try to do it by
introducing a mark into the argument-places--for instance by writing '(G,G) . F(G,G)' --it
would not be adequate: we should not be able to establish the identity of the variables.
And so on. All these modes of signifying are inadequate because they lack the necessary
mathematical multiplicity.
4.0412 For the same reason the idealist's appeal to 'spatial spectacles'
is inadequate to explain the seeing of spatial relations, because it cannot explain the
multiplicity of these relations.
4.05 Reality is compared with propositions.
4.06 A proposition can be true or false only in virtue of being a picture
of reality.
4.061 It must not be overlooked that a proposition has a sense that is
independent of the facts: otherwise one can easily suppose that true and false are
relations of equal status between signs and what they signify. In that case one could say,
for example, that 'p' signified in the true way what 'Pp' signified in the false way, etc.
4.062 Can we not make ourselves understood with false propositions just
as we have done up till now with true ones?--So long as it is known that they are meant to
be false.--No! For a proposition is true if we use it to say that things stand in a
certain way, and they do; and if by 'p' we mean Pp and things stand as we mean that they
do, then, construed in the new way, 'p' is true and not false.
4.0621 But it is important that the signs 'p' and 'Pp' can say the same
thing. For it shows that nothing in reality corresponds to the sign 'P'. The occurrence of
negation in a proposition is not enough to characterize its sense (PPp = p). The
propositions 'p' and 'Pp' have opposite sense, but there corresponds to them one and the
same reality.
4.063 An analogy to illustrate the concept of truth: imagine a black spot
on white paper: you can describe the shape of the spot by saying, for each point on the
sheet, whether it is black or white. To the fact that a point is black there corresponds a
positive fact, and to the fact that a point is white (not black), a negative fact. If I
designate a point on the sheet (a truth-value according to Frege), then this corresponds
to the supposition that is put forward for judgement, etc. etc. But in order to be able to
say that a point is black or white, I must first know when a point is called black, and
when white: in order to be able to say,'"p" is true (or false)', I must have
determined in what circumstances I call 'p' true, and in so doing I determine the sense of
the proposition. Now the point where the simile breaks down is this: we can indicate a
point on the paper even if we do not know what black and white are, but if a proposition
has no sense, nothing corresponds to it, since it does not designate a thing (a
truth-value) which might have properties called 'false' or 'true'. The verb of a
proposition is not 'is true' or 'is false', as Frege thought: rather, that which 'is true'
must already contain the verb.
4.064 Every proposition must already have a sense: it cannot be given a
sense by affirmation. Indeed its sense is just what is affirmed. And the same applies to
negation, etc.
4.0641 One could say that negation must be related to the logical place
determined by the negated proposition. The negating proposition determines a logical place
different from that of the negated proposition. The negating proposition determines a
logical place with the help of the logical place of the negated proposition. For it
describes it as lying outside the latter's logical place. The negated proposition can be
negated again, and this in itself shows that what is negated is already a proposition, and
not merely something that is prelimary to a proposition.
4.1 Propositions represent the existence and non-existence of states of
affairs.
4.11 The totality of true propositions is the whole of natural science
(or the whole corpus of the natural sciences).
4.111 Philosophy is not one of the natural sciences. (The word
'philosophy' must mean something whose place is above or below the natural sciences, not
beside them.)
4.112 Philosophy aims at the logical clarification of thoughts.
Philosophy is not a body of doctrine but an activity. A philosophical work consists
essentially of elucidations. Philosophy does not result in 'philosophical propositions',
but rather in the clarification of propositions. Without philosophy thoughts are, as it
were, cloudy and indistinct: its task is to make them clear and to give them sharp
boundaries.
4.1121 Psychology is no more closely related to philosophy than any other
natural science. Theory of knowledge is the philosophy of psychology. Does not my study of
sign-language correspond to the study of thought-processes, which philosophers used to
consider so essential to the philosophy of logic? Only in most cases they got entangled in
unessential psychological investigations, and with my method too there is an analogous
risk.
4.1122 Darwin's theory has no more to do with philosophy than any other
hypothesis in natural science.
4.113 Philosophy sets limits to the much disputed sphere of natural
science.
4.114 It must set limits to what can be thought; and, in doing so, to
what cannot be thought. It must set limits to what cannot be thought by working outwards
through what can be thought.
4.115 It will signify what cannot be said, by presenting clearly what can
be said.
4.116 Everything that can be thought at all can be thought clearly.
Everything that can be put into words can be put clearly.
4.12 Propositions can represent the whole of reality, but they cannot
represent what they must have in common with reality in order to be able to represent
it--logical form. In order to be able to represent logical form, we should have to be able
to station ourselves with propositions somewhere outside logic, that is to say outside the
world.
4.121 Propositions cannot represent logical form: it is mirrored in them.
What finds its reflection in language, language cannot represent. What expresses itself in
language, we cannot express by means of language. Propositions show the logical form of
reality. They display it.
4.1211 Thus one proposition 'fa' shows that the object a occurs in its
sense, two propositions 'fa' and 'ga' show that the same object is mentioned in both of
them. If two propositions contradict one another, then their structure shows it; the same
is true if one of them follows from the other. And so on.
4.1212 What can be shown, cannot be said.
4.1213 Now, too, we understand our feeling that once we have a
sign-language in which everything is all right, we already have a correct logical point of
view.
4.122 In a certain sense we can talk about formal properties of objects
and states of affairs, or, in the case of facts, about structural properties: and in the
same sense about formal relations and structural relations. (Instead of 'structural
property' I also say 'internal property'; instead of 'structural relation', 'internal
relation'. I introduce these expressions in order to indicate the source of the confusion
between internal relations and relations proper (external relations), which is very
widespread among philosophers.) It is impossible, however, to assert by means of
propositions that such internal properties and relations obtain: rather, this makes itself
manifest in the propositions that represent the relevant states of affairs and are
concerned with the relevant objects.
4.1221 An internal property of a fact can also be bed a feature of that
fact (in the sense in which we speak of facial features, for example).
4.123 A property is internal if it is unthinkable that its object should
not possess it. (This shade of blue and that one stand, eo ipso, in the internal relation
of lighter to darker. It is unthinkable that these two objects should not stand in this
relation.) (Here the shifting use of the word 'object' corresponds to the shifting use of
the words 'property' and 'relation'.)
4.124 The existence of an internal property of a possible situation is
not expressed by means of a proposition: rather, it expresses itself in the proposition
representing the situation, by means of an internal property of that proposition. It would
be just as nonsensical to assert that a proposition had a formal property as to deny it.
4.1241 It is impossible to distinguish forms from one another by saying
that one has this property and another that property: for this presupposes that it makes
sense to ascribe either property to either form.
4.125 The existence of an internal relation between possible situations
expresses itself in language by means of an internal relation between the propositions
representing them.
4.1251 Here we have the answer to the vexed question 'whether all
relations are internal or external'.
4.1252 I call a series that is ordered by an internal relation a series
of forms. The order of the number-series is not governed by an external relation but by an
internal relation. The same is true of the series of propositions 'aRb', '(d : c) : aRx .
xRb', '(d x,y) : aRx . xRy . yRb', and so forth. (If b stands in one of these relations to
a, I call b a successor of a.)
4.126 We can now talk about formal concepts, in the same sense that we
speak of formal properties. (I introduce this expression in order to exhibit the source of
the confusion between formal concepts and concepts proper, which pervades the whole of
traditional logic.) When something falls under a formal concept as one of its objects,
this cannot be expressed by means of a proposition. Instead it is shown in the very sign
for this object. (A name shows that it signifies an object, a sign for a number that it
signifies a number, etc.) Formal concepts cannot, in fact, be represented by means of a
function, as concepts proper can. For their characteristics, formal properties, are not
expressed by means of functions. The expression for a formal property is a feature of
certain symbols. So the sign for the characteristics of a formal concept is a distinctive
feature of all symbols whose meanings fall under the concept. So the expression for a
formal concept is a propositional variable in which this distinctive feature alone is
constant.
4.127 The propositional variable signifies the formal concept, and its
values signify the objects that fall under the concept.
4.1271 Every variable is the sign for a formal concept. For every
variable represents a constant form that all its values possess, and this can be regarded
as a formal property of those values.
4.1272 Thus the variable name 'x' is the proper sign for the
pseudo-concept object. Wherever the word 'object' ('thing', etc.) is correctly used, it is
expressed in conceptual notation by a variable name. For example, in the proposition,
'There are 2 objects which. . .', it is expressed by ' (dx,y) ... '. Wherever it is used
in a different way, that is as a proper concept-word, nonsensical pseudo-propositions are
the result. So one cannot say, for example, 'There are objects', as one might say, 'There
are books'. And it is just as impossible to say, 'There are 100 objects', or, 'There are
!0 objects'. And it is nonsensical to speak of the total number of objects. The same
applies to the words 'complex', 'fact', 'function', 'number', etc. They all signify formal
concepts, and are represented in conceptual notation by variables, not by functions or
classes (as Frege and Russell believed). '1 is a number', 'There is only one zero', and
all similar expressions are nonsensical. (It is just as nonsensical to say, 'There is only
one 1', as it would be to say, '2 + 2 at 3 o'clock equals 4'.)
4.12721 A formal concept is given immediately any object falling under it
is given. It is not possible, therefore, to introduce as primitive ideas objects belonging
to a formal concept and the formal concept itself. So it is impossible, for example, to
introduce as primitive ideas both the concept of a function and specific functions, as
Russell does; or the concept of a number and particular numbers.
4.1273 If we want to express in conceptual notation the general
proposition, 'b is a successor of a', then we require an expression for the general term
of the series of forms 'aRb', '(d : c) : aRx . xRb', '(d x,y) : aRx . xRy . yRb', ... , In
order to express the general term of a series of forms, we must use a variable, because
the concept 'term of that series of forms' is a formal concept. (This is what Frege and
Russell overlooked: consequently the way in which they want to express general
propositions like the one above is incorrect; it contains a vicious circle.) We can
determine the general term of a series of forms by giving its first term and the general
form of the operation that produces the next term out of the proposition that precedes it.
4.1274 To ask whether a formal concept exists is nonsensical. For no
proposition can be the answer to such a question. (So, for example, the question, 'Are
there unanalysable subject-predicate propositions?' cannot be asked.)
4.128 Logical forms are without number. Hence there are no preeminent
numbers in logic, and hence there is no possibility of philosophical monism or dualism,
etc.
4.2 The sense of a proposition is its agreement and disagreement with
possibilities of existence and non-existence of states of affairs.
4.21 The simplest kind of proposition, an elementary proposition, asserts
the existence of a state of affairs.
4.211 It is a sign of a proposition's being elementary that there can be
no elementary proposition contradicting it.
4.22 An elementary proposition consists of names. It is a nexus, a
concatenation, of names.
4.221 It is obvious that the analysis of propositions must bring us to
elementary propositions which consist of names in immediate combination. This raises the
question how such combination into propositions comes about.
4.2211 Even if the world is infinitely complex, so that every fact
consists of infinitely many states of affairs and every state of affairs is composed of
infinitely many objects, there would still have to be objects and states of affairs.
4.23 It is only in the nexus of an elementary proposition that a name
occurs in a proposition.
4.24 Names are the simple symbols: I indicate them by single letters
('x', 'y', 'z'). I write elementary propositions as functions of names, so that they have
the form 'fx', 'O (x,y)', etc. Or I indicate them by the letters 'p', 'q', 'r'.
4.241 When I use two signs with one and the same meaning, I express this
by putting the sign '=' between them. So 'a = b' means that the sign 'b' can be
substituted for the sign 'a'. (If I use an equation to introduce a new sign 'b', laying
down that it shall serve as a substitute for a sign a that is already known, then, like
Russell, I write the equation-- definition--in the form 'a = b Def.' A definition is a
rule dealing with signs.)
4.242 Expressions of the form 'a = b' are, therefore, mere
representational devices. They state nothing about the meaning of the signs 'a' and 'b'.
4.243 Can we understand two names without knowing whether they signify
the same thing or two different things?--Can we understand a proposition in which two
names occur without knowing whether their meaning is the same or different? Suppose I know
the meaning of an English word and of a German word that means the same: then it is
impossible for me to be unaware that they do mean the same; I must be capable of
translating each into the other. Expressions like 'a = a', and those derived from them,
are neither elementary propositions nor is there any other way in which they have sense.
(This will become evident later.)
4.25 If an elementary proposition is true, the state of affairs exists:
if an elementary proposition is false, the state of affairs does not exist.
4.26 If all true elementary propositions are given, the result is a
complete description of the world. The world is completely described by giving all
elementary propositions, and adding which of them are true and which false. For n states
of affairs, there are possibilities of existence and non-existence. Of these states of
affairs any combination can exist and the remainder not exist.
4.28 There correspond to these combinations the same number of
possibilities of truth--and falsity--for n elementary propositions.
4.3 Truth-possibilities of elementary propositions mean Possibilities of
existence and non-existence of states of affairs.
4.31 We can represent truth-possibilities by schemata of the following
kind ('T' means 'true', 'F' means 'false'; the rows of 'T's' and 'F's' under the row of
elementary propositions symbolize their truth-possibilities in a way that can easily be
understood):
4.4 A proposition is an expression of agreement and disagreement with
truth-possibilities of elementary propositions.
4.41 Truth-possibilities of elementary propositions are the conditions of
the truth and falsity of propositions.
4.411 It immediately strikes one as probable that the introduction of
elementary propositions provides the basis for understanding all other kinds of
proposition. Indeed the understanding of general propositions palpably depends on the
understanding of elementary propositions.
4.42 For n elementary propositions there are ways in which a proposition
can agree and disagree with their truth possibilities.
4.43 We can express agreement with truth-possibilities by correlating the
mark 'T' (true) with them in the schema. The absence of this mark means disagreement.
4.431 The expression of agreement and disagreement with the truth
possibilities of elementary propositions expresses the truth-conditions of a proposition.
A proposition is the expression of its truth-conditions. (Thus Frege was quite right to
use them as a starting point when he explained the signs of his conceptual notation. But
the explanation of the concept of truth that Frege gives is mistaken: if 'the true' and
'the false' were really objects, and were the arguments in Pp etc., then Frege's method of
determining the sense of 'Pp' would leave it absolutely undetermined.)
4.44 The sign that results from correlating the mark 'I" with
truth-possibilities is a propositional sign.
4.441 It is clear that a complex of the signs 'F' and 'T' has no object
(or complex of objects) corresponding to it, just as there is none corresponding to the
horizontal and vertical lines or to the brackets.--There are no 'logical objects'. Of
course the same applies to all signs that express what the schemata of 'T's' and 'F's'
express.
4.442 For example, the following is a propositional sign: (Frege's
'judgement stroke' '|-' is logically quite meaningless: in the works of Frege (and
Russell) it simply indicates that these authors hold the propositions marked with this
sign to be true. Thus '|-' is no more a component part of a proposition than is, for
instance, the proposition's number. It is quite impossible for a proposition to state that
it itself is true.) If the order or the truth-possibilities in a scheme is fixed once and
for all by a combinatory rule, then the last column by itself will be an expression of the
truth-conditions. If we now write this column as a row, the propositional sign will become
'(TT-T) (p,q)' or more explicitly '(TTFT) (p,q)' (The number of places in the left-hand
pair of brackets is determined by the number of terms in the right-hand pair.)
4.45 For n elementary propositions there are Ln possible groups of
truth-conditions. The groups of truth-conditions that are obtainable from the
truth-possibilities of a given number of elementary propositions can be arranged in a
series.
4.46 Among the possible groups of truth-conditions there are two extreme
cases. In one of these cases the proposition is true for all the truth-possibilities of
the elementary propositions. We say that the truth-conditions are tautological. In the
second case the proposition is false for all the truth-possibilities: the truth-conditions
are contradictory . In the first case we call the proposition a tautology; in the second,
a contradiction.
4.461 Propositions show what they say; tautologies and contradictions
show that they say nothing. A tautology has no truth-conditions, since it is
unconditionally true: and a contradiction is true on no condition. Tautologies and
contradictions lack sense. (Like a point from which two arrows go out in opposite
directions to one another.) (For example, I know nothing about the weather when I know
that it is either raining or not raining.)
4.46211 Tautologies and contradictions are not, however, nonsensical.
They are part of the symbolism, much as '0' is part of the symbolism of arithmetic.
4.462 Tautologies and contradictions are not pictures of reality. They do
not represent any possible situations. For the former admit all possible situations, and
latter none . In a tautology the conditions of agreement with the world--the
representational relations--cancel one another, so that it does not stand in any
representational relation to reality.
4.463 The truth-conditions of a proposition determine the range that it
leaves open to the facts. (A proposition, a picture, or a model is, in the negative sense,
like a solid body that restricts the freedom of movement of others, and in the positive
sense, like a space bounded by solid substance in which there is room for a body.) A
tautology leaves open to reality the whole--the infinite whole--of logical space: a
contradiction fills the whole of logical space leaving no point of it for reality. Thus
neither of them can determine reality in any way.
4.464 A tautology's truth is certain, a proposition's possible, a
contradiction's impossible. (Certain, possible, impossible: here we have the first
indication of the scale that we need in the theory of probability.)
4.465 The logical product of a tautology and a proposition says the same
thing as the proposition. This product, therefore, is identical with the proposition. For
it is impossible to alter what is essential to a symbol without altering its sense.
4.466 What corresponds to a determinate logical combination of signs is a
determinate logical combination of their meanings. It is only to the uncombined signs that
absolutely any combination corresponds. In other words, propositions that are true for
every situation cannot be combinations of signs at all, since, if they were, only
determinate combinations of objects could correspond to them. (And what is not a logical
combination has no combination of objects corresponding to it.) Tautology and
contradiction are the limiting cases--indeed the disintegration--of the combination of
signs.
4.4661 Admittedly the signs are still combined with one another even in
tautologies and contradictions--i.e. they stand in certain relations to one another: but
these relations have no meaning, they are not essential to the symbol .
4.5 It now seems possible to give the most general propositional form:
that is, to give a description of the propositions of any sign-language whatsoever in such
a way that every possible sense can be expressed by a symbol satisfying the description,
and every symbol satisfying the description can express a sense, provided that the
meanings of the names are suitably chosen. It is clear that only what is essential to the
most general propositional form may be included in its description--for otherwise it would
not be the most general form. The existence of a general propositional form is proved by
the fact that there cannot be a proposition whose form could not have been foreseen (i.e.
constructed). The general form of a proposition is: This is how things stand.
4.51 Suppose that I am given all elementary propositions: then I can
simply ask what propositions I can construct out of them. And there I have all
propositions, and that fixes their limits.
4.52 Propositions comprise all that follows from the totality of all
elementary propositions (and, of course, from its being the totality of them all ). (Thus,
in a certain sense, it could be said that all propositions were generalizations of
elementary propositions.)
4.53 The general propositional form is a variable.
5 A proposition is a truth-function of elementary propositions. (An
elementary proposition is a truth-function of itself.)
5.01 Elementary propositions are the truth-arguments of propositions.
5.02 The arguments of functions are readily confused with the affixes of
names. For both arguments and affixes enable me to recognize the meaning of the signs
containing them. For example, when Russell writes '+c', the 'c' is an affix which
indicates that the sign as a whole is the addition-sign for cardinal numbers. But the use
of this sign is the result of arbitrary convention and it would be quite possible to
choose a simple sign instead of '+c'; in 'Pp' however, 'p' is not an affix but an
argument: the sense of 'Pp' cannot be understood unless the sense of 'p' has been
understood already. (In the name Julius Caesar 'Julius' is an affix. An affix is always
part of a description of the object to whose name we attach it: e.g. the Caesar of the
Julian gens.) If I am not mistaken, Frege's theory about the meaning of propositions and
functions is based on the confusion between an argument and an affix. Frege regarded the
propositions of logic as names, and their arguments as the affixes of those names.
5.1 Truth-functions can be arranged in series. That is the foundation of
the theory of probability.
5.101 The truth-functions of a given number of elementary propositions
can always be set out in a schema of the following kind: (TTTT) (p, q) Tautology (If p
then p, and if q then q.) (p z p . q z q) (FTTT) (p, q) In words : Not both p and q. (P(p
. q)) (TFTT) (p, q) " : If q then p. (q z p) (TTFT) (p, q) " : If p then q. (p z
q) (TTTF) (p, q) " : p or q. (p C q) (FFTT) (p, q) " : Not g. (Pq) (FTFT) (p, q)
" : Not p. (Pp) (FTTF) (p, q) " : p or q, but not both. (p . Pq : C : q . Pp)
(TFFT) (p, q) " : If p then p, and if q then p. (p + q) (TFTF) (p, q) " : p
(TTFF) (p, q) " : q (FFFT) (p, q) " : Neither p nor q. (Pp . Pq or p | q) (FFTF)
(p, q) " : p and not q. (p . Pq) (FTFF) (p, q) " : q and not p. (q . Pp) (TFFF)
(p,q) " : q and p. (q . p) (FFFF) (p, q) Contradiction (p and not p, and q and not
q.) (p . Pp . q . Pq) I will give the name truth-grounds of a proposition to those
truth-possibilities of its truth-arguments that make it true.
5.11 If all the truth-grounds that are common to a number of propositions
are at the same time truth-grounds of a certain proposition, then we say that the truth of
that proposition follows from the truth of the others.
5.12 In particular, the truth of a proposition 'p' follows from the truth
of another proposition 'q' is all the truth-grounds of the latter are truth-grounds of the
former.
5.121 The truth-grounds of the one are contained in those of the other: p
follows from q.
5.122 If p follows from q, the sense of 'p' is contained in the sense of
'q'.
5.123 If a god creates a world in which certain propositions are true,
then by that very act he also creates a world in which all the propositions that follow
from them come true. And similarly he could not create a world in which the proposition
'p' was true without creating all its objects.
5.124 A proposition affirms every proposition that follows from it.
5.1241 'p . q' is one of the propositions that affirm 'p' and at the same
time one of the propositions that affirm 'q'. Two propositions are opposed to one another
if there is no proposition with a sense, that affirms them both. Every proposition that
contradicts another negate it.
5.13 When the truth of one proposition follows from the truth of others,
we can see this from the structure of the proposition.
5.131 If the truth of one proposition follows from the truth of others,
this finds expression in relations in which the forms of the propositions stand to one
another: nor is it necessary for us to set up these relations between them, by combining
them with one another in a single proposition; on the contrary, the relations are
internal, and their existence is an immediate result of the existence of the propositions.
5.1311 When we infer q from p C q and Pp, the relation between the
propositional forms of 'p C q' and 'Pp' is masked, in this case, by our mode of
signifying. But if instead of 'p C q' we write, for example, 'p|q . | . p|q', and instead
of 'Pp', 'p|p' (p|q = neither p nor q), then the inner connexion becomes obvious. (The
possibility of inference from (x) . fx to fa shows that the symbol (x) . fx itself has
generality in it.)
5.132 If p follows from q, I can make an inference from q to p, deduce p
from q. The nature of the inference can be gathered only from the two propositions. They
themselves are the only possible justification of the inference. 'Laws of inference',
which are supposed to justify inferences, as in the works of Frege and Russell, have no
sense, and would be superfluous.
5.133 All deductions are made a priori.
5.134 One elementary proposition cannot be deduced form another.
5.135 There is no possible way of making an inference form the existence
of one situation to the existence of another, entirely different situation.
5.136 There is no causal nexus to justify such an inference.
5.1361 We cannot infer the events of the future from those of the
present.
5.1362 The freedom of the will consists in the impossibility of knowing
actions that still lie in the future. We could know them only if causality were an inner
necessity like that of logical inference.--The connexion between knowledge and what is
known is that of logical necessity. ('A knows that p is the case', has no sense if p is a
tautology.)
5.1363 If the truth of a proposition does not follow from the fact that
it is self-evident to us, then its self-evidence in no way justifies our belief in its
truth.
5.14 If one proposition follows from another, then the latter says more
than the former, and the former less than the latter.
5.141 If p follows from q and q from p, then they are one and same
proposition.
5.142 A tautology follows from all propositions: it says nothing.
5.143 Contradiction is that common factor of propositions which no
proposition has in common with another. Tautology is the common factor of all propositions
that have nothing in common with one another. Contradiction, one might say, vanishes
outside all propositions: tautology vanishes inside them. Contradiction is the outer limit
of propositions: tautology is the unsubstantial point at their centre.
5.15 If Tr is the number of the truth-grounds of a proposition 'r', and
if Trs is the number of the truth-grounds of a proposition 's' that are at the same time
truth-grounds of 'r', then we call the ratio Trs : Tr the degree of probability that the
proposition 'r' gives to the proposition 's'.
5.151 In a schema like the one above in 5.101, let Tr be the number of
'T's' in the proposition r, and let Trs, be the number of 'T's' in the proposition s that
stand in columns in which the proposition r has 'T's'. Then the proposition r gives to the
proposition s the probability Trs : Tr.
5.1511 There is no special object peculiar to probability propositions.
5.152 When propositions have no truth-arguments in common with one
another, we call them independent of one another. Two elementary propositions give one
another the probability 1/2. If p follows from q, then the proposition 'q' gives to the
proposition 'p' the probability 1. The certainty of logical inference is a limiting case
of probability. (Application of this to tautology and contradiction.)
5.153 In itself, a proposition is neither probable nor improbable. Either
an event occurs or it does not: there is no middle way.
5.154 Suppose that an urn contains black and white balls in equal numbers
(and none of any other kind). I draw one ball after another, putting them back into the
urn. By this experiment I can establish that the number of black balls drawn and the
number of white balls drawn approximate to one another as the draw continues. So this is
not a mathematical truth. Now, if I say, 'The probability of my drawing a white ball is
equal to the probability of my drawing a black one', this means that all the circumstances
that I know of (including the laws of nature assumed as hypotheses) give no more
probability to the occurrence of the one event than to that of the other. That is to say,
they give each the probability 1/2 as can easily be gathered from the above definitions.
What I confirm by the experiment is that the occurrence of the two events is independent
of the circumstances of which I have no more detailed knowledge.
5.155 The minimal unit for a probability proposition is this: The
circumstances--of which I have no further knowledge--give such and such a degree of
probability to the occurrence of a particular event.
5.156 It is in this way that probability is a generalization. It involves
a general description of a propositional form. We use probability only in default of
certainty--if our knowledge of a fact is not indeed complete, but we do know something
about its form. (A proposition may well be an incomplete picture of a certain situation,
but it is always a complete picture of something .) A probability proposition is a sort of
excerpt from other propositions.
5.2 The structures of propositions stand in internal relations to one
another.
5.21 In order to give prominence to these internal relations we can adopt
the following mode of expression: we can represent a proposition as the result of an
operation that produces it out of other propositions (which are the bases of the
operation).
5.22 An operation is the expression of a relation between the structures
of its result and of its bases.
5.23 The operation is what has to be done to the one proposition in order
to make the other out of it.
5.231 And that will, of course, depend on their formal properties, on the
internal similarity of their forms.
5.232 The internal relation by which a series is ordered is equivalent to
the operation that produces one term from another.
5.233 Operations cannot make their appearance before the point at which
one proposition is generated out of another in a logically meaningful way; i.e. the point
at which the logical construction of propositions begins.
5.234 Truth-functions of elementary propositions are results of
operations with elementary propositions as bases. (These operations I call
truth-operations.)
5.2341 The sense of a truth-function of p is a function of the sense of
p. Negation, logical addition, logical multiplication, etc. etc. are operations. (Negation
reverses the sense of a proposition.)
5.24 An operation manifests itself in a variable; it shows how we can get
from one form of proposition to another. It gives expression to the difference between the
forms. (And what the bases of an operation and its result have in common is just the bases
themselves.)
5.241 An operation is not the mark of a form, but only of a difference
between forms.
5.242 The operation that produces 'q' from 'p' also produces 'r' from
'q', and so on. There is only one way of expressing this: 'p', 'q', 'r', etc. have to be
variables that give expression in a general way to certain formal relations.
5.25 The occurrence of an operation does not characterize the sense of a
proposition. Indeed, no statement is made by an operation, but only by its result, and
this depends on the bases of the operation. (Operations and functions must not be confused
with each other.)
5.251 A function cannot be its own argument, whereas an operation can
take one of its own results as its base.
5.252 It is only in this way that the step from one term of a series of
forms to another is possible (from one type to another in the hierarchies of Russell and
Whitehead). (Russell and Whitehead did not admit the possibility of such steps, but
repeatedly availed themselves of it.)
5.2521 If an operation is applied repeatedly to its own results, I speak
of successive applications of it. ('O'O'O'a' is the result of three successive
applications of the operation 'O'E' to 'a'.) In a similar sense I speak of successive
applications of more than one operation to a number of propositions.
5.2522 Accordingly I use the sign '[a, x, O'x]' for the general term of
the series of forms a, O'a, O'O'a, ... . This bracketed expression is a variable: the
first term of the bracketed expression is the beginning of the series of forms, the second
is the form of a term x arbitrarily selected from the series, and the third is the form of
the term that immediately follows x in the series.
5.2523 The concept of successive applications of an operation is
equivalent to the concept 'and so on'.
5.253 One operation can counteract the effect of another. Operations can
cancel one another.
5.254 An operation can vanish (e.g. negation in 'PPp' : PPp = p).
5.3 All propositions are results of truth-operations on elementary
propositions. A truth-operation is the way in which a truth-function is produced out of
elementary propositions. It is of the essence of truth-operations that, just as elementary
propositions yield a truth-function of themselves, so too in the same way truth-functions
yield a further truth-function. When a truth-operation is applied to truth-functions of
elementary propositions, it always generates another truth-function of elementary
propositions, another proposition. When a truth-operation is applied to the results of
truth-operations on elementary propositions, there is always a single operation on
elementary propositions that has the same result. Every proposition is the result of
truth-operations on elementary propositions.
5.31 The schemata in 4.31 have a meaning even when 'p', 'q', 'r', etc.
are not elementary propositions. And it is easy to see that the propositional sign in
4.442 expresses a single truth-function of elementary propositions even when 'p' and 'q'
are truth-functions of elementary propositions.
5.32 All truth-functions are results of successive applications to
elementary propositions of a finite number of truth-operations.
5.4 At this point it becomes manifest that there are no 'logical objects'
or 'logical constants' (in Frege's and Russell's sense).
5.41 The reason is that the results of truth-operations on
truth-functions are always identical whenever they are one and the same truth-function of
elementary propositions.
5.42 It is self-evident that C, z, etc. are not relations in the sense in
which right and left etc. are relations. The interdefinability of Frege's and Russell's
'primitive signs' of logic is enough to show that they are not primitive signs, still less
signs for relations. And it is obvious that the 'z' defined by means of 'P' and 'C' is
identical with the one that figures with 'P' in the definition of 'C'; and that the second
'C' is identical with the first one; and so on.
5.43 Even at first sight it seems scarcely credible that there should
follow from one fact p infinitely many others , namely PPp, PPPPp, etc. And it is no less
remarkable that the infinite number of propositions of logic (mathematics) follow from
half a dozen 'primitive propositions'. But in fact all the propositions of logic say the
same thing, to wit nothing.
5.44 Truth-functions are not material functions. For example, an
affirmation can be produced by double negation: in such a case does it follow that in some
sense negation is contained in affirmation? Does 'PPp' negate Pp, or does it affirm p--or
both? The proposition 'PPp' is not about negation, as if negation were an object: on the
other hand, the possibility of negation is already written into affirmation. And if there
were an object called 'P', it would follow that 'PPp' said something different from what
'p' said, just because the one proposition would then be about P and the other would not.
5.441 This vanishing of the apparent logical constants also occurs in the
case of 'P(dx) . Pfx', which says the same as '(x) . fx', and in the case of '(dx) . fx .
x = a', which says the same as 'fa'.
5.442 If we are given a proposition, then with it we are also given the
results of all truth-operations that have it as their base.
5.45 If there are primitive logical signs, then any logic that fails to
show clearly how they are placed relatively to one another and to justify their existence
will be incorrect. The construction of logic out of its primitive signs must be made
clear.
5.451 If logic has primitive ideas, they must be independent of one
another. If a primitive idea has been introduced, it must have been introduced in all the
combinations in which it ever occurs. It cannot, therefore, be introduced first for one
combination and later reintroduced for another. For example, once negation has been
introduced, we must understand it both in propositions of the form 'Pp' and in
propositions like 'P(p C q)', '(dx) . Pfx', etc. We must not introduce it first for the
one class of cases and then for the other, since it would then be left in doubt whether
its meaning were the same in both cases, and no reason would have been given for combining
the signs in the same way in both cases. (In short, Frege's remarks about introducing
signs by means of definitions (in The Fundamental Laws of Arithmetic ) also apply, mutatis
mutandis, to the introduction of primitive signs.)
5.452 The introduction of any new device into the symbolism of logic is
necessarily a momentous event. In logic a new device should not be introduced in brackets
or in a footnote with what one might call a completely innocent air. (Thus in Russell and
Whitehead's Principia Mathematica there occur definitions and primitive propositions
expressed in words. Why this sudden appearance of words? It would require a justification,
but none is given, or could be given, since the procedure is in fact illicit.) But if the
introduction of a new device has proved necessary at a certain point, we must immediately
ask ourselves, 'At what points is the employment of this device now unavoidable ?' and its
place in logic must be made clear.
5.453 All numbers in logic stand in need of justification. Or rather, it
must become evident that there are no numbers in logic. There are no pre-eminent numbers.
5.454 In logic there is no co-ordinate status, and there can be no
classification. In logic there can be no distinction between the general and the specific.
5.4541 The solutions of the problems of logic must be simple, since they
set the standard of simplicity. Men have always had a presentiment that there must be a
realm in which the answers to questions are symmetrically combined--a priori--to form a
self-contained system. A realm subject to the law: Simplex sigillum veri.
5.46 If we introduced logical signs properly, then we should also have
introduced at the same time the sense of all combinations of them; i.e. not only 'p C q'
but 'P(p C q)' as well, etc. etc. We should also have introduced at the same time the
effect of all possible combinations of brackets. And thus it would have been made clear
that the real general primitive signs are not ' p C q', '(dx) . fx', etc. but the most
general form of their combinations.
5.461 Though it seems unimportant, it is in fact significant that the
pseudo-relations of logic, such as C and z, need brackets--unlike real relations. Indeed,
the use of brackets with these apparently primitive signs is itself an indication that
they are not primitive signs. And surely no one is going to believe brackets have an
independent meaning.
5.4611 Signs for logical operations are punctuation-marks,
5.47 It is clear that whatever we can say in advance about the form of
all propositions, we must be able to say all at once . An elementary proposition really
contains all logical operations in itself. For 'fa' says the same thing as '(dx) . fx . x
= a' Wherever there is compositeness, argument and function are present, and where these
are present, we already have all the logical constants. One could say that the sole
logical constant was what all propositions, by their very nature, had in common with one
another. But that is the general propositional form.
5.471 The general propositional form is the essence of a proposition.
5.4711 To give the essence of a proposition means to give the essence of
all description, and thus the essence of the world.
5.472 The description of the most general propositional form is the
description of the one and only general primitive sign in logic.
5.473 Logic must look after itself. If a sign is possible , then it is
also capable of signifying. Whatever is possible in logic is also permitted. (The reason
why 'Socrates is identical' means nothing is that there is no property called 'identical'.
The proposition is nonsensical because we have failed to make an arbitrary determination,
and not because the symbol, in itself, would be illegitimate.) In a certain sense, we
cannot make mistakes in logic.
5.4731 Self-evidence, which Russell talked about so much, can become
dispensable in logic, only because language itself prevents every logical mistake.--What
makes logic a priori is the impossibility of illogical thought.
5.4732 We cannot give a sign the wrong sense.
5,47321 Occam's maxim is, of course, not an arbitrary rule, nor one that
is justified by its success in practice: its point is that unnecessary units in a
sign-language mean nothing. Signs that serve one purpose are logically equivalent, and
signs that serve none are logically meaningless.
5.4733 Frege says that any legitimately constructed proposition must have
a sense. And I say that any possible proposition is legitimately constructed, and, if it
has no sense, that can only be because we have failed to give a meaning to some of its
constituents. (Even if we think that we have done so.) Thus the reason why 'Socrates is
identical' says nothing is that we have not given any adjectival meaning to the word
'identical'. For when it appears as a sign for identity, it symbolizes in an entirely
different way--the signifying relation is a different one--therefore the symbols also are
entirely different in the two cases: the two symbols have only the sign in common, and
that is an accident.
5.474 The number of fundamental operations that are necessary depends
solely on our notation.
5.475 All that is required is that we should construct a system of signs
with a particular number of dimensions--with a particular mathematical multiplicity
5.476 It is clear that this is not a question of a number of primitive
ideas that have to be signified, but rather of the expression of a rule.
5.5 Every truth-function is a result of successive applications to
elementary propositions of the operation '(-----T)(E, ....)'. This operation negates all
the propositions in the right-hand pair of brackets, and I call it the negation of those
propositions.
5.501 When a bracketed expression has propositions as its terms--and the
order of the terms inside the brackets is indifferent--then I indicate it by a sign of the
form '(E)'. '(E)' is a variable whose values are terms of the bracketed expression and the
bar over the variable indicates that it is the representative of ali its values in the
brackets. (E.g. if E has the three values P,Q, R, then (E) = (P, Q, R). ) What the values
of the variable are is something that is stipulated. The stipulation is a description of
the propositions that have the variable as their representative. How the description of
the terms of the bracketed expression is produced is not essential. We can distinguish
three kinds of description: 1.Direct enumeration, in which case we can simply substitute
for the variable the constants that are its values; 2. giving a function fx whose values
for all values of x are the propositions to be described; 3. giving a formal law that
governs the construction of the propositions, in which case the bracketed expression has
as its members all the terms of a series of forms.
5.502 So instead of '(-----T)(E, ....)', I write 'N(E)'. N(E) is the
negation of all the values of the propositional variable E.
5.503 It is obvious that we can easily express how propositions may be
constructed with this operation, and how they may not be constructed with it; so it must
be possible to find an exact expression for this.
5.51 If E has only one value, then N(E) = Pp (not p); if it has two
values, then N(E) = Pp . Pq. (neither p nor g).
5.511 How can logic--all-embracing logic, which mirrors the world--use
such peculiar crotchets and contrivances? Only because they are all connected with one
another in an infinitely fine network, the great mirror.
5.512 'Pp' is true if 'p' is false. Therefore, in the proposition 'Pp',
when it is true, 'p' is a false proposition. How then can the stroke 'P' make it agree
with reality? But in 'Pp' it is not 'P' that negates, it is rather what is common to all
the signs of this notation that negate p. That is to say the common rule that governs the
construction of 'Pp', 'PPPp', 'Pp C Pp', 'Pp . Pp', etc. etc. (ad inf.). And this common
factor mirrors negation.
5.513 We might say that what is common to all symbols that affirm both p
and q is the proposition 'p . q'; and that what is common to all symbols that affirm
either p or q is the proposition 'p C q'. And similarly we can say that two propositions
are opposed to one another if they have nothing in common with one another, and that every
proposition has only one negative, since there is only one proposition that lies
completely outside it. Thus in Russell's notation too it is manifest that 'q : p C Pp'
says the same thing as 'q', that 'p C Pq' says nothing.
5.514 Once a notation has been established, there will be in it a rule
governing the construction of all propositions that negate p, a rule governing the
construction of all propositions that affirm p, and a rule governing the construction of
all propositions that affirm p or q; and so on. These rules are equivalent to the symbols;
and in them their sense is mirrored.
5.515 It must be manifest in our symbols that it can only be propositions
that are combined with one another by 'C', '.', etc. And this is indeed the case, since
the symbol in 'p' and 'q' itself presupposes 'C', 'P', etc. If the sign 'p' in 'p C q'
does not stand for a complex sign, then it cannot have sense by itself: but in that case
the signs 'p C p', 'p . p', etc., which have the same sense as p, must also lack sense.
But if 'p C p' has no sense, then 'p C q' cannot have a sense either.
5.5151 Must the sign of a negative proposition be constructed with that
of the positive proposition? Why should it not be possible to express a negative
proposition by means of a negative fact? (E.g. suppose that "a' does not stand in a
certain relation to 'b'; then this might be used to say that aRb was not the case.) But
really even in this case the negative proposition is constructed by an indirect use of the
positive. The positive proposition necessarily presupposes the existence of the negative
proposition and vice versa.
5.52 If E has as its values all the values of a function fx for all
values of x, then N(E) = P(dx) . fx.
5.521 I dissociate the concept all from truth-functions. Frege and
Russell introduced generality in association with logical productor logical sum. This made
it difficult to understand the propositions '(dx) . fx' and '(x) . fx', in which both
ideas are embedded.
5.522 What is peculiar to the generality-sign is first, that it indicates
a logical prototype, and secondly, that it gives prominence to constants.
5.523 The generality-sign occurs as an argument.
5.524 If objects are given, then at the same time we are given all
objects. If elementary propositions are given, then at the same time all elementary
propositions are given.
5.525 It is incorrect to render the proposition '(dx) . fx' in the words,
'fx is possible ' as Russell does. The certainty, possibility, or impossibility of a
situation is not expressed by a proposition, but by an expression's being a tautology, a
proposition with a sense, or a contradiction. The precedent to which we are constantly
inclined to appeal must reside in the symbol itself.
5.526 We can describe the world completely by means of fully generalized
propositions, i.e. without first correlating any name with a particular object.
5.5261 A fully generalized proposition, like every other proposition, is
composite. (This is shown by the fact that in '(dx, O) . Ox' we have to mention 'O' and
's' separately. They both, independently, stand in signifying relations to the world, just
as is the case in ungeneralized propositions.) It is a mark of a composite symbol that it
has something in common with other symbols.
5.5262 The truth or falsity of every proposition does make some
alteration in the general construction of the world. And the range that the totality of
elementary propositions leaves open for its construction is exactly the same as that which
is delimited by entirely general propositions. (If an elementary proposition is true, that
means, at any rate, one more true elementary proposition.)
5.53 Identity of object I express by identity of sign, and not by using a
sign for identity. Difference of objects I express by difference of signs.
5.5301 It is self-evident that identity is not a relation between
objects. This becomes very clear if one considers, for example, the proposition '(x) : fx
. z . x = a'. What this proposition says is simply that only a satisfies the function f,
and not that only things that have a certain relation to a satisfy the function, Of
course, it might then be said that only a did have this relation to a; but in order to
express that, we should need the identity-sign itself.
5.5302 Russell's definition of '=' is inadequate, because according to it
we cannot say that two objects have all their properties in common. (Even if this
proposition is never correct, it still has sense .)
5.5303 Roughly speaking, to say of two things that they are identical is
nonsense, and to say of one thing that it is identical with itself is to say nothing at
all.
5.531 Thus I do not write 'f(a, b) . a = b', but 'f(a, a)' (or 'f(b, b));
and not 'f(a,b) . Pa = b', but 'f(a, b)'.
5.532 And analogously I do not write '(dx, y) . f(x, y) . x = y', but
'(dx) . f(x, x)'; and not '(dx, y) . f(x, y) . Px = y', but '(dx, y) . f(x, y)'.
5.5321 Thus, for example, instead of '(x) : fx z x = a' we write '(dx) .
fx . z : (dx, y) . fx. fy'. And the proposition, 'Only one x satisfies f( )', will read
'(dx) . fx : P(dx, y) . fx . fy'.
5.533 The identity-sign, therefore, is not an essential constituent of
conceptual notation.
5.534 And now we see that in a correct conceptual notation
pseudo-propositions like 'a = a', 'a = b . b = c . z a = c', '(x) . x = x', '(dx) . x =
a', etc. cannot even be written down.
5.535 This also disposes of all the problems that were connected with
such pseudo-propositions. All the problems that Russell's 'axiom of infinity' brings with
it can be solved at this point. What the axiom of infinity is intended to say would
express itself in language through the existence of infinitely many names with different
meanings.
5.5351 There are certain cases in which one is tempted to use expressions
of the form 'a = a' or 'p z p' and the like. In fact, this happens when one wants to talk
about prototypes, e.g. about proposition, thing, etc. Thus in Russell's Principles of
Mathematics 'p is a proposition'--which is nonsense--was given the symbolic rendering 'p z
p' and placed as an hypothesis in front of certain propositions in order to exclude from
their argument-places everything but propositions. (It is nonsense to place the hypothesis
'p z p' in front of a proposition, in order to ensure that its arguments shall have the
right form, if only because with a non-proposition as argument the hypothesis becomes not
false but nonsensical, and because arguments of the wrong kind make the proposition itself
nonsensical, so that it preserves itself from wrong arguments just as well, or as badly,
as the hypothesis without sense that was appended for that purpose.)
5.5352 In the same way people have wanted to express, 'There are no
things ', by writing 'P(dx) . x = x'. But even if this were a proposition, would it not be
equally true if in fact 'there were things' but they were not identical with themselves?
5.54 In the general propositional form propositions occur in other
propositions only as bases of truth-operations.
5.541 At first sight it looks as if it were also possible for one
proposition to occur in another in a different way. Particularly with certain forms of
proposition in psychology, such as 'A believes that p is the case' and A has the thought
p', etc. For if these are considered superficially, it looks as if the proposition p stood
in some kind of relation to an object A. (And in modern theory of knowledge (Russell,
Moore, etc.) these propositions have actually been construed in this way.)
5.542 It is clear, however, that 'A believes that p', 'A has the thought
p', and 'A says p' are of the form '"p" says p': and this does not involve a
correlation of a fact with an object, but rather the correlation of facts by means of the
correlation of their objects.
5.5421 This shows too that there is no such thing as the soul--the
subject, etc.--as it is conceived in the superficial psychology of the present day. Indeed
a composite soul would no longer be a soul.
5.5422 The correct explanation of the form of the proposition, 'A makes
the judgement p', must show that it is impossible for a judgement to be a piece of
nonsense. (Russell's theory does not satisfy this requirement.)
5.5423 To perceive a complex means to perceive that its constituents are
related to one another in such and such a way. This no doubt also explains why there are
two possible ways of seeing the figure as a cube; and all similar phenomena. For we really
see two different facts. (If I look in the first place at the corners marked a and only
glance at the b's, then the a's appear to be in front, and vice versa).
5.55 We now have to answer a priori the question about all the possible
forms of elementary propositions. Elementary propositions consist of names. Since,
however, we are unable to give the number of names with different meanings, we are also
unable to give the composition of elementary propositions.
5.551 Our fundamental principle is that whenever a question can be
decided by logic at all it must be possible to decide it without more ado. (And if we get
into a position where we have to look at the world for an answer to such a problem, that
shows that we are on a completely wrong track.)
5.552 The 'experience' that we need in order to understand logic is not
that something or other is the state of things, but that something is : that, however, is
not an experience. Logic is prior to every experience--that something is so . It is prior
to the question 'How?' not prior to the question 'What?'
5.5521 And if this were not so, how could we apply logic? We might put it
in this way: if there would be a logic even if there were no world, how then could there
be a logic given that there is a world?
5.553 Russell said that there were simple relations between different
numbers of things (individuals). But between what numbers? And how is this supposed to be
decided?--By experience? (There is no pre-eminent number.)
5.554 It would be completely arbitrary to give any specific form.
5.5541 It is supposed to be possible to answer a priori the question
whether I can get into a position in which I need the sign for a 27-termed relation in
order to signify something.
5.5542 But is it really legitimate even to ask such a question? Can we
set up a form of sign without knowing whether anything can correspond to it? Does it make
sense to ask what there must be in order that something can be the case?
5.555 Clearly we have some concept of elementary propositions quite apart
from their particular logical forms. But when there is a system by which we can create
symbols, the system is what is important for logic and not the individual symbols. And
anyway, is it really possible that in logic I should have to deal with forms that I can
invent? What I have to deal with must be that which makes it possible for me to invent
them.
5.556 There cannot be a hierarchy of the forms of elementary
propositions. We can foresee only what we ourselves construct.
5.5561 Empirical reality is limited by the totality of objects. The limit
also makes itself manifest in the totality of elementary propositions. Hierarchies are and
must be independent of reality.
5.5562 If we know on purely logical grounds that there must be elementary
propositions, then everyone who understands propositions in their C form must know It.
5.5563 In fact, all the propositions of our everyday language, just as
they stand, are in perfect logical order.--That utterly simple thing, which we have to
formulate here, is not a likeness of the truth, but the truth itself in its entirety. (Our
problems are not abstract, but perhaps the most concrete that there are.)
5.557 The application of logic decides what elementary propositions there
are. What belongs to its application, logic cannot anticipate. It is clear that logic must
not clash with its application. But logic has to be in contact with its application.
Therefore logic and its application must not overlap.
5.5571 If I cannot say a priori what elementary propositions there are,
then the attempt to do so must lead to obvious nonsense.
5.6 The limits of my language mean the limits of my world.
5.61 Logic pervades the world: the limits of the world are also its
limits. So we cannot say in logic, 'The world has this in it, and this, but not that.' For
that would appear to presuppose that we were excluding certain possibilities, and this
cannot be the case, since it would require that logic should go beyond the limits of the
world; for only in that way could it view those limits from the other side as well. We
cannot think what we cannot think; so what we cannot think we cannot say either.
5.62 This remark provides the key to the problem, how much truth there is
in solipsism. For what the solipsist means is quite correct; only it cannot be said , but
makes itself manifest. The world is my world: this is manifest in the fact that the limits
of language (of that language which alone I understand) mean the limits of my world.
5.621 The world and life are one.
5.63 I am my world. (The microcosm.)
5.631 There is no such thing as the subject that thinks or entertains
ideas. If I wrote a book called The World as l found it , I should have to include a
report on my body, and should have to say which parts were subordinate to my will, and
which were not, etc., this being a method of isolating the subject, or rather of showing
that in an important sense there is no subject; for it alone could not be mentioned in
that book.--
5.632 The subject does not belong to the world: rather, it is a limit of
the world.
5.633 Where in the world is a metaphysical subject to be found? You will
say that this is exactly like the case of the eye and the visual field. But really you do
not see the eye. And nothing in the visual field allows you to infer that it is seen by an
eye.
5.6331 For the form of the visual field is surely not like this
5.634 This is connected with the fact that no part of our experience is
at the same time a priori. Whatever we see could be other than it is. Whatever we can
describe at all could be other than it is. There is no a priori order of things.
5.64 Here it can be seen that solipsism, when its implications are
followed out strictly, coincides with pure realism. The self of solipsism shrinks to a
point without extension, and there remains the reality co-ordinated with it.
5.641 Thus there really is a sense in which philosophy can talk about the
self in a non-psychological way. What brings the self into philosophy is the fact that
'the world is my world'. The philosophical self is not the human being, not the human
body, or the human soul, with which psychology deals, but rather the metaphysical subject,
the limit of the world--not a part of it.
6 The general form of a truth-function is [p, E, N(E)]. This is the
general form of a proposition.
6.001 What this says is just that every proposition is a result of
successive applications to elementary propositions of the operation N(E)
6.002 If we are given the general form according to which propositions
are constructed, then with it we are also given the general form according to which one
proposition can be generated out of another by means of an operation.
6.01 Therefore the general form of an operation /'(n) is [E, N(E)] ' (n)
( = [n, E, N(E)]). This is the most general form of transition from one proposition to
another.
6.02 And this is how we arrive at numbers. I give the following
definitions x = /0x Def., /'/v'x = /v+1'x Def. So, in accordance with these rules, which
deal with signs, we write the series x, /'x, /'/'x, /'/'/'x, ... , in the following way
/0'x, /0+1'x, /0+1+1'x, /0+1+1+1'x, ... . Therefore, instead of '[x, E, /'E]', I write
'[/0'x, /v'x, /v+1'x]'. And I give the following definitions 0 + 1 = 1 Def., 0 + 1 + 1 = 2
Def., 0 + 1 + 1 +1 = 3 Def., (and so on).
6.021 A number is the exponent of an operation.
6.022 The concept of number is simply what is common to all numbers, the
general form of a number. The concept of number is the variable number. And the concept of
numerical equality is the general form of all particular cases of numerical equality.
6.03 The general form of an integer is [0, E, E +1].
6.031 The theory of classes is completely superfluous in mathematics.
This is connected with the fact that the generality required in mathematics is not
accidental generality.
6.1 The propositions of logic are tautologies.
6.11 Therefore the propositions of logic say nothing. (They are the
analytic propositions.)
6.111 All theories that make a proposition of logic appear to have
content are false. One might think, for example, that the words 'true' and 'false'
signified two properties among other properties, and then it would seem to be a remarkable
fact that every proposition possessed one of these properties. On this theory it seems to
be anything but obvious, just as, for instance, the proposition, 'All roses are either
yellow or red', would not sound obvious even if it were true. Indeed, the logical
proposition acquires all the characteristics of a proposition of natural science and this
is the sure sign that it has been construed wrongly.
6.112 The correct explanation of the propositions of logic must assign to
them a unique status among all propositions.
6.113 It is the peculiar mark of logical propositions that one can
recognize that they are true from the symbol alone, and this fact contains in itself the
whole philosophy of logic. And so too it is a very important fact that the truth or
falsity of non-logical propositions cannot be recognized from the propositions alone.
6.12 The fact that the propositions of logic are tautologies shows the
formal--logical--properties of language and the world. The fact that a tautology is
yielded by this particular way of connecting its constituents characterizes the logic of
its constituents. If propositions are to yield a tautology when they are connected in a
certain way, they must have certain structural properties. So their yielding a tautology
when combined in this shows that they possess these structural properties.
6.1201 For example, the fact that the propositions 'p' and 'Pp' in the
combination '(p . Pp)' yield a tautology shows that they contradict one another. The fact
that the propositions 'p z q', 'p', and 'q', combined with one another in the form '(p z
q) . (p) :z: (q)', yield a tautology shows that q follows from p and p z q. The fact that
'(x) . fxx :z: fa' is a tautology shows that fa follows from (x) . fx. Etc. etc.
6.1202 It is clear that one could achieve the same purpose by using
contradictions instead of tautologies.
6.1203 In order to recognize an expression as a tautology, in cases where
no generality-sign occurs in it, one can employ the following intuitive method: instead of
'p', 'q', 'r', etc. I write 'TpF', 'TqF', 'TrF', etc. Truth-combinations I express by
means of brackets, e.g. and I use lines to express the correlation of the truth or falsity
of the whole proposition with the truth-combinations of its truth-arguments, in the
following way
So this sign, for instance, would represent the proposition p z q. Now,
by way of example, I wish to examine the proposition P(p .Pp) (the law of contradiction)
in order to determine whether it is a tautology. In our notation the form 'PE' is written
as and the form 'E . n' as Hence the proposition P(p . Pp). reads as follows
If we here substitute 'p' for 'q' and examine how the outermost T and F
are connected with the innermost ones, the result will be that the truth of the whole
proposition is correlated with all the truth-combinations of its argument, and its falsity
with none of the truth-combinations.
6.121 The propositions of logic demonstrate the logical properties of
propositions by combining them so as to form propositions that say nothing. This method
could also be called a zero-method. In a logical proposition, propositions are brought
into equilibrium with one another, and the state of equilibrium then indicates what the
logical constitution of these propositions must be.
6.122 It follows from this that we can actually do without logical
propositions; for in a suitable notation we can in fact recognize the formal properties of
propositions by mere inspection of the propositions themselves.
6.1221 If, for example, two propositions 'p' and 'q' in the combination
'p z q' yield a tautology, then it is clear that q follows from p. For example, we see
from the two propositions themselves that 'q' follows from 'p z q . p', but it is also
possible to show it in this way: we combine them to form 'p z q . p :z: q', and then show
that this is a tautology.
6.1222 This throws some light on the question why logical propositions
cannot be confirmed by experience any more than they can be refuted by it. Not only must a
proposition of logic be irrefutable by any possible experience, but it must also be
unconfirmable by any possible experience.
6.1223 Now it becomes clear why people have often felt as if it were for
us to 'postulate ' the 'truths of logic'. The reason is that we can postulate them in so
far as we can postulate an adequate notation.
6.1224 It also becomes clear now why logic was called the theory of forms
and of inference.
6.123 Clearly the laws of logic cannot in their turn be subject to laws
of logic. (There is not, as Russell thought, a special law of contradiction for each
'type'; one law is enough, since it is not applied to itself.)
6.1231 The mark of a logical proposition is not general validity. To be
general means no more than to be accidentally valid for all things. An ungeneralized
proposition can be tautological just as well as a generalized one.
6.1232 The general validity of logic might be called essential, in
contrast with the accidental general validity of such propositions as 'All men are
mortal'. Propositions like Russell's 'axiom of reducibility' are not logical propositions,
and this explains our feeling that, even if they were true, their truth could only be the
result of a fortunate accident.
6.1233 It is possible to imagine a world in which the axiom of
reducibility is not valid. It is clear, however, that logic has nothing to do with the
question whether our world really is like that or not.
6.124 The propositions of logic describe the scaffolding of the world, or
rather they represent it. They have no 'subject-matter'. They presuppose that names have
meaning and elementary propositions sense; and that is their connexion with the world. It
is clear that something about the world must be indicated by the fact that certain
combinations of symbols--whose essence involves the possession of a determinate
character--are tautologies. This contains the decisive point. We have said that some
things are arbitrary in the symbols that we use and that some things are not. In logic it
is only the latter that express: but that means that logic is not a field in which we
express what we wish with the help of signs, but rather one in which the nature of the
absolutely necessary signs speaks for itself. If we know the logical syntax of any
sign-language, then we have already been given all the propositions of logic.
6.125 It is possible--indeed possible even according to the old
conception of logic--to give in advance a description of all 'true' logical propositions.
6.1251 Hence there can never be surprises in logic.
6.126 One can calculate whether a proposition belongs to logic, by
calculating the logical properties of the symbol. And this is what we do when we 'prove' a
logical proposition. For, without bothering about sense or meaning, we construct the
logical proposition out of others using only rules that deal with signs . The proof of
logical propositions consists in the following process: we produce them out of other
logical propositions by successively applying certain operations that always generate
further tautologies out of the initial ones. (And in fact only tautologies follow from a
tautology.) Of course this way of showing that the propositions of logic are tautologies
is not at all essential to logic, if only because the propositions from which the proof
starts must show without any proof that they are tautologies.
6.1261 In logic process and result are equivalent. (Hence the absence of
surprise.)
6.1262 Proof in logic is merely a mechanical expedient to facilitate the
recognition of tautologies in complicated cases.
6.1263 Indeed, it would be altogether too remarkable if a proposition
that had sense could be proved logically from others, and so too could a logical
proposition. It is clear from the start that a logical proof of a proposition that has
sense and a proof in logic must be two entirely different things.
6.1264 A proposition that has sense states something, which is shown by
its proof to be so. In logic every proposition is the form of a proof. Every proposition
of logic is a modus ponens represented in signs. (And one cannot express the modus ponens
by means of a proposition.)
6.1265 It is always possible to construe logic in such a way that every
proposition is its own proof.
6.127 All the propositions of logic are of equal status: it is not the
case that some of them are essentially derived propositions. Every tautology itself shows
that it is a tautology.
6.1271 It is clear that the number of the 'primitive propositions of
logic' is arbitrary, since one could derive logic from a single primitive proposition,
e.g. by simply constructing the logical product of Frege's primitive propositions. (Frege
would perhaps say that we should then no longer have an immediately self-evident primitive
proposition. But it is remarkable that a thinker as rigorous as Frege appealed to the
degree of self-evidence as the criterion of a logical proposition.)
6.13 Logic is not a body of doctrine, but a mirror-image of the world.
Logic is transcendental.
6.2 Mathematics is a logical method. The propositions of mathematics are
equations, and therefore pseudo-propositions.
6.21 A proposition of mathematics does not express a thought.
6.211 Indeed in real life a mathematical proposition is never what we
want. Rather, we make use of mathematical propositions only in inferences from
propositions that do not belong to mathematics to others that likewise do not belong to
mathematics. (In philosophy the question, 'What do we actually use this word or this
proposition for?' repeatedly leads to valuable insights.)
6.22 The logic of the world, which is shown in tautologies by the
propositions of logic, is shown in equations by mathematics.
6.23 If two expressions are combined by means of the sign of equality,
that means that they can be substituted for one another. But it must be manifest in the
two expressions themselves whether this is the case or not. When two expressions can be
substituted for one another, that characterizes their logical form.
6.231 It is a property of affirmation that it can be construed as double
negation. It is a property of '1 + 1 + 1 + 1' that it can be construed as '(1 + 1) + (1 +
1)'.
6.232 Frege says that the two expressions have the same meaning but
different senses. But the essential point about an equation is that it is not necessary in
order to show that the two expressions connected by the sign of equality have the same
meaning, since this can be seen from the two expressions themselves.
6.2321 And the possibility of proving the propositions of mathematics
means simply that their correctness can be perceived without its being necessary that what
they express should itself be compared with the facts in order to determine its
correctness.
6.2322 It is impossible to assert the identity of meaning of two
expressions. For in order to be able to assert anything about their meaning, I must know
their meaning, and I cannot know their meaning without knowing whether what they mean is
the same or different.
6.2323 An equation merely marks the point of view from which I consider
the two expressions: it marks their equivalence in meaning.
6.233 The question whether intuition is needed for the solution of
mathematical problems must be given the answer that in this case language itself provides
the necessary intuition.
6.2331 The process of calculating serves to bring about that intuition.
Calculation is not an experiment.
6.234 Mathematics is a method of logic.
6.2341 It is the essential characteristic of mathematical method that it
employs equations. For it is because of this method that every proposition of mathematics
must go without saying.
6.24 The method by which mathematics arrives at its equations is the
method of substitution. For equations express the substitutability of two expressions and,
starting from a number of equations, we advance to new equations by substituting different
expressions in accordance with the equations.
6.241 Thus the proof of the proposition 2 t 2 = 4 runs as follows:
(/v)n'x = /v x u'x Def., /2 x 2'x = (/2)2'x = (/2)1 + 1'x = /2' /2'x = /1 + 1'/1 + 1'x =
(/'/)'(/'/)'x =/'/'/'/'x = /1 + 1 + 1 + 1'x = /4'x.
6.3 The exploration of logic means the exploration of everything that is
subject to law . And outside logic everything is accidental.
6.31 The so-called law of induction cannot possibly be a law of logic,
since it is obviously a proposition with sense.---Nor, therefore, can it be an a priori
law.
6.32 The law of causality is not a law but the form of a law.
6.321 'Law of causality'--that is a general name. And just as in
mechanics, for example, there are 'minimum-principles', such as the law of least action,
so too in physics there are causal laws, laws of the causal form.
6.3211 Indeed people even surmised that there must be a 'law of least
action' before they knew exactly how it went. (Here, as always, what is certain a priori
proves to be something purely logical.)
6.33 We do not have an a priori belief in a law of conservation, but
rather a priori knowledge of the possibility of a logical form.
6.34 All such propositions, including the principle of sufficient reason,
tile laws of continuity in nature and of least effort in ature, etc. etc.--all these are a
priori insights about the forms in which the propositions of science can be cast.
6.341 Newtonian mechanics, for example, imposes a unified form on the
description of the world. Let us imagine a white surface with irregular black spots on it.
We then say that whatever kind of picture these make, I can always approximate as closely
as I wish to the description of it by covering the surface with a sufficiently fine square
mesh, and then saying of every square whether it is black or white. In this way I shall
have imposed a unified form on the description of the surface. The form is optional, since
I could have achieved the same result by using a net with a triangular or hexagonal mesh.
Possibly the use of a triangular mesh would have made the description simpler: that is to
say, it might be that we could describe the surface more accurately with a coarse
triangular mesh than with a fine square mesh (or conversely), and so on. The different
nets correspond to different systems for describing the world. Mechanics determines one
form of description of the world by saying that all propositions used in the description
of the world must be obtained in a given way from a given set of propositions--the axioms
of mechanics. It thus supplies the bricks for building the edifice of science, and it
says, 'Any building that you want to erect, whatever it may be, must somehow be
constructed with these bricks, and with these alone.' (Just as with the number-system we
must be able to write down any number we wish, so with the system of mechanics we must be
able to write down any proposition of physics that we wish.)
6.342 And now we can see the relative position of logic and mechanics.
(The net might also consist of more than one kind of mesh: e.g. we could use both
triangles and hexagons.) The possibility of describing a picture like the one mentioned
above with a net of a given form tells us nothing about the picture. (For that is true of
all such pictures.) But what does characterize the picture is that it can be described
completely by a particular net with a particular size of mesh. Similarly the possibility
of describing the world by means of Newtonian mechanics tells us nothing about the world:
but what does tell us something about it is the precise way in which it is possible to
describe it by these means. We are also told something about the world by the fact that it
can be described more simply with one system of mechanics than with another.
6.343 Mechanics is an attempt to construct according to a single plan all
the true propositions that we need for the description of the world.
6.3431 The laws of physics, with all their logical apparatus, still
speak, however indirectly, about the objects of the world.
6.3432 We ought not to forget that any description of the world by means
of mechanics will be of the completely general kind. For example, it will never mention
particular point-masses: it will only talk about any point-masses whatsoever.
6.35 Although the spots in our picture are geometrical figures,
nevertheless geometry can obviously say nothing at all about their actual form and
position. The network, however, is purely geometrical; all its properties can be given a
priori. Laws like the principle of sufficient reason, etc. are about the net and not about
what the net describes.
6.36 If there were a law of causality, it might be put in the following
way: There are laws of nature. But of course that cannot be said: it makes itself
manifest.
6.361 One might say, using Hertt:'s terminology, that only connexions
that are subject to law are thinkable.
6.3611 We cannot compare a process with 'the passage of time'--there is
no such thing--but only with another process (such as the working of a chronometer). Hence
we can describe the lapse of time only by relying on some other process. Something exactly
analogous applies to space: e.g. when people say that neither of two events (which exclude
one another) can occur, because there is nothing to cause the one to occur rather than the
other, it is really a matter of our being unable to describe one of the two events unless
there is some sort of asymmetry to be found. And if such an asymmetry is to be found, we
can regard it as the cause of the occurrence of the one and the non-occurrence of the
other.
6.36111 Kant's problem about the right hand and the left hand, which
cannot be made to coincide, exists even in two dimensions. Indeed, it exists in
one-dimensional space in which the two congruent figures, a and b, cannot be made to
coincide unless they are moved out of this space. The right hand and the left hand are in
fact completely congruent. It is quite irrelevant that they cannot be made to coincide. A
right-hand glove could be put on the left hand, if it could be turned round in
four-dimensional space.
6.362 What can be described can happen too: and what the law of causality
is meant to exclude cannot even be described.
6.363 The procedure of induction consists in accepting as true the
simplest law that can be reconciled with our experiences.
6.3631 This procedure, however, has no logical justification but only a
psychological one. It is clear that there are no grounds for believing that the simplest
eventuality will in fact be realized.
6.36311 It is an hypothesis that the sun will rise tomorrow: and this
means that we do not know whether it will rise.
6.37 There is no compulsion making one thing happen because another has
happened. The only necessity that exists is logical necessity.
6.371 The whole modern conception of the world is founded on the illusion
that the so-called laws of nature are the explanations of natural phenomena.
6.372 Thus people today stop at the laws of nature, treating them as
something inviolable, just as God and Fate were treated in past ages. And in fact both are
right and both wrong: though the view of the ancients is clearer in so far as they have a
clear and acknowledged terminus, while the modern system tries to make it look as if
everything were explained.
6.373 The world is independent of my will.
6.374 Even if all that we wish for were to happen, still this would only
be a favour granted by fate, so to speak: for there is no logical connexion between the
will and the world, which would guarantee it, and the supposed physical connexion itself
is surely not something that we could will.
6.375 Just as the only necessity that exists is logical necessity, so too
the only impossibility that exists is logical impossibility.
6.3751 For example, the simultaneous presence of two colours at the same
place in the visual field is impossible, in fact logically impossible, since it is ruled
out by the logical structure of colour. Let us think how this contradiction appears in
physics: more or less as follows--a particle cannot have two velocities at the same time;
that is to say, it cannot be in two places at the same time; that is to say, particles
that are in different places at the same time cannot be identical. (It is clear that the
logical product of two elementary propositions can neither be a tautology nor a
contradiction. The statement that a point in the visual field has two different colours at
the same time is a contradiction.)
6.4 All propositions are of equal value.
6.41 The sense of the world must lie outside the world. In the world
everything is as it is, and everything happens as it does happen: in it no value
exists--and if it did exist, it would have no value. If there is any value that does have
value, it must lie outside the whole sphere of what happens and is the case. For all that
happens and is the case is accidental. What makes it non-accidental cannot lie within the
world, since if it did it would itself be accidental. It must lie outside the world.
6.42 So too it is impossible for there to be propositions of ethics.
Propositions can express nothing that is higher.
6.421 It is clear that ethics cannot be put into words. Ethics is
transcendental. (Ethics and aesthetics are one and the same.)
6.422 When an ethical law of the form, 'Thou shalt ...' is laid down,
one's first thought is, 'And what if I do, not do it?' It is clear, however, that ethics
has nothing to do with punishment and reward in the usual sense of the terms. So our
question about the consequences of an action must be unimportant.--At least those
consequences should not be events. For there must be something right about the question we
posed. There must indeed be some kind of ethical reward and ethical punishment, but they
must reside in the action itself. (And it is also clear that the reward must be something
pleasant and the punishment something unpleasant.)
6.423 It is impossible to speak about the will in so far as it is the
subject of ethical attributes. And the will as a phenomenon is of interest only to
psychology.
6.43 If the good or bad exercise of the will does alter the world, it can
alter only the limits of the world, not the facts--not what can be expressed by means of
language. In short the effect must be that it becomes an altogether different world. It
must, so to speak, wax and wane as a whole. The world of the happy man is a different one
from that of the unhappy man.
6.431 So too at death the world does not alter, but comes to an end.
6.4311 Death is not an event in life: we do not live to experience death.
If we take eternity to mean not infinite temporal duration but timelessness, then eternal
life belongs to those who live in the present. Our life has no end in just the way in
which our visual field has no limits.
6.4312 Not only is there no guarantee of the temporal immortality of the
human soul, that is to say of its eternal survival after death; but, in any case, this
assumption completely fails to accomplish the purpose for which it has always been
intended. Or is some riddle solved by my surviving for ever? Is not this eternal life
itself as much of a riddle as our present life? The solution of the riddle of life in
space and time lies outside space and time. (It is certainly not the solution of any
problems of natural science that is required.)
6.432 How things are in the world is a matter of complete indifference
for what is higher. God does not reveal himself in the world.
6.4321 The facts all contribute only to setting the problem, not to its
solution.
6.44 It is not how things are in the world that is mystical, but that it
exists.
6.45 To view the world sub specie aeterni is to view it as a whole--a
limited whole. Feeling the world as a limited whole--it is this that is mystical.
6.5 When the answer cannot be put into words, neither can the question be
put into words. The riddle does not exist. If a question can be framed at all, it is also
possible to answer it.
6.51 Scepticism is not irrefutable, but obviously nonsensical, when it
tries to raise doubts where no questions can be asked. For doubt can exist only where a
question exists, a question only where an answer exists, and an answer only where
something can be said.
6.52 We feel that even when all possible scientific questions have been
answered, the problems of life remain completely untouched. Of course there are then no
questions left, and this itself is the answer.
6.521 The solution of the problem of life is seen in the vanishing of the
problem. (Is not this the reason why those who have found after a long period of doubt
that the sense of life became clear to them have then been unable to say what constituted
that sense?)
6.522 There are, indeed, things that cannot be put into words. They make
themselves manifest. They are what is mystical.
6.53 The correct method in philosophy would really be the following: to
say nothing except what can be said, i.e. propositions of natural science--i.e. something
that has nothing to do with philosophy -- and then, whenever someone else wanted to say
something metaphysical, to demonstrate to him that he had failed to give a meaning to
certain signs in his propositions. Although it would not be satisfying to the other
person--he would not have the feeling that we were teaching him philosophy--this method
would be the only strictly correct one.
6.54 My propositions are elucidatory in this way: he who understands me
finally recognizes them as senseless, when he has climbed out through them, on them, over
them. (He must so to speak throw away the ladder, after he has climbed up on it.)
7 What we cannot speak about we must pass over in silence. |